On an analytic estimate in the theory of the Riemann zeta function and a theorem of Báez-Duarte.

نویسنده

  • Jean-François Burnol
چکیده

On the Riemann hypothesis we establish a uniform upper estimate for zeta(s)/zeta (s + A), 0 < or = A, on the critical line. We use this to give a purely complex-analytic variant of Báez-Duarte's proof of a strengthened Nyman-Beurling criterion for the validity of the Riemann Hypothesis. We investigate function-theoretically some of the functions defined by Báez-Duarte in his study and we show that their square-integrability is, in itself, an equivalent formulation of the Riemann Hypothesis. We conclude with a third equivalent formulation which resembles a "causality" statement.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the coefficients of the Báez-Duarte criterion for the Riemann hypothesis and their extensions

We present analytic properties and extensions of the constants ck appearing in the Báez-Duarte criterion for the Riemann hypothesis. These constants are the coefficients of Pochhammer polynomials in a series representation of the reciprocal of the Riemann zeta function. We present generalizations of this representation to the Hurwitz zeta and many other special functions. We relate the correspo...

متن کامل

On Differences of Zeta Values

Finite differences of values of the Riemann zeta function at the integers are explored. Such quantities, which occur as coefficients in Newton series representations, have surfaced in works of Maślanka, Coffey, Báez-Duarte, Voros and others. We apply the theory of Nörlund-Rice integrals in conjunction with the saddle point method and derive precise asymptotic estimates. The method extends to Di...

متن کامل

On Maslanka's Representation for the Riemann Zeta Function

A rigorous proof is given of the hypergeometric-like representation of the Riemann zeta function discovered by K. Maslanka.

متن کامل

A Lower Bound in an Approximation Problem Involving the Zeros of the Riemann Zeta Function

We slightly improve the lower bound of Báez-Duarte, Balazard, Landreau and Saias in the Nyman-Beurling formulation of the Riemann Hypothesis as an approximation problem. We construct Hilbert space vectors which could prove useful in the context of the so-called “Hilbert-Pólya idea”. Université de NiceSophia Antipolis Laboratoire J.-A. Dieudonné Parc Valrose F-06108 Nice Cedex 02 France burnol@m...

متن کامل

0 M ar 2 00 6 Báez - Duarte ’ s Criterion for the Riemann Hypothesis and Rice ’ s Integrals ∗

Criterion for the Riemann hypothesis found by Báez-Duarte involves certain real coefficients ck defined as alternating binomial sums. These coefficients can be effectively investigated using Rice’s integrals. Their behavior exhibits typical trend (due to trivial zeros of zeta) and fading oscillations (due to complex zeros). This method enables to calculate ck for large values of k at least to k...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Acta cientifica venezolana

دوره 54 3  شماره 

صفحات  -

تاریخ انتشار 2003